
How a Computer Works
Learning CS with Python Series - Day 1

Let’s Design a Simple Circuit

Imagine two wires:

One on top with voltage (think of this as pressure)

One goes to ground

A resistor hangs from the top wire, connected to a
switch then connected to ground

So you have two states based on the condition of
the switch

Let’s Design a Simple Circuit

Now replace the physical switch with a transistor

A transistor is an automatic/electronic switch that
can be turned on or off based on current to one of its
three connections

What we just described is an inverter

But with just that inverter...
Gates:

NOR Gate: Inverter plus one transistor (if either is 1,
output 0)

OR Gate: NOR Gate + Plus an Inverter (if either is 1,
output 1)

AND Gate: Inverter + NOR Gate (If both is 1, output
1)

XOR Gate: Combination of 4 NOR gates

Storing Bits - Flip-Flop
Let’s say you have two inverters

The output of inverter 1 goes into the input of inverter
2

The output of inverter 2 goes into the input of inverter
1

This is stable, it can “store” a 1 or 0 indefinitely

Now, stick some gates in-between the two inverters,
this allows you to change the value

Example: Performing
Addition

So you want to add two bits:

Use an XOR Gate (with some circuitry for the carry)

If one of the two bits is 1, then the value is 1

If both of the two bits are 0, then the value is 0

If both of the two bits are 1, then the value is 0
with a “carry”

Connect a bunch of these together using the carry

So, this is all there is?

Yes! A computer doesn’t do much, it just doesn’t do
much really fast

I’m simplifying, but much of the last 40/50 years can
be thought of as just making the circuits smaller and
cheaper

Transistor Counts

Intel 8080 -> 4.5 Thousand

Pentium -> 3.1 Million

Core i7 -> 2.3 Billion

Machine Language

So we have some storage (memory)

We have some basic tasks (such as addition) that can
be performed by the hardware

Now, let’s introduce the concept of a program counter

Program Counter

The counter starts at the top (line 0) and increments
down a memory space (document) line by line

Each line contains a “word”

A word is a combination of an action and a memory
address

There is a special register of data called the
accumulator

What is a “word”

0011 0 1010010001000100

Op Code

Redirect Bit

Memory Address

Focus on the OP Code

A four bit OP Code would allow for 16 instructions

Each of these instructions corresponds to circuits in the
processor (just like we talked about with the addition
operation)

Example OP Codes

0000

0001

0010

0011

What do they do?

Add

Subtract

Load the Accumulator

Store Accumulator to Memory

I/O Instructions

Logic and Flow Control (Skip and Jump)

Assembly Language
Adds a layer of English on top OP Codes

No one wants to remember 0000 to load the
accumulator. So instead we type:

ADD memory address

SUB memory address

LDA memory address

STA memory address

Assembly Language

We then take this document and run it through an
“assembler” which turns it into machine language

It is a one-to-one relationship, each line corresponds
to a binary line of machine language

An assembler is the simplest form of “compiler”

Moving to higher languages

When you compile C, objective-c, Small Talk, whatever,
your converting your code into series of machine
language “words”

Unlike assembler, it is a one-to-many relationship.
Each line of your code represents many lines of
machine code.

But not all commands are equal. Some operations (like
addition) take very few words. Others take many.

So, when I write something in Python, I’m
really writing machine code?

Yes! And you need to be aware of how it translates so
you know what is efficient, and what is not.

When you store something in a variable, you are
really converting it to binary and storing it in a
particular address of memory

When you do an if statement, you are really using a
comparison operation with a jump operation

etc

Data types

Think about it: there is really only one type - integer

But we can “fake” it for some other types

If we group 8 bits together we can represent 255
different things, let’s say we map those to characters
of the alphabet

Using this method a bunch of “bytes” (8 bit
groups), make up a “string”

Data types

Floats (binary decimal numbers) can be represented
by taking 1 bit to represent the sign, some number of
bits to represent the exponent (e.g. 8) and the rest to
represent the fraction (e.g. 23)

